Adaptive Constraint Pushing in Frequent Pattern Mining
نویسندگان
چکیده
Pushing monotone constraints in frequent pattern mining can help pruning the search space, but at the same time it can also reduce the effectiveness of anti-monotone pruning. There is a clear tradeoff. Is it better to exploit more monotone pruning at the cost of less antimonotone pruning, or viceversa? The answer depends on characteristics of the dataset and the selectivity of constraints. In this paper, we deeply characterize this trade-off and its related computational problem. As a result of this characterization, we introduce an adaptive strategy, named ACP (Adaptive Constraint Pushing) which exploits any conjunction of monotone and anti-monotone constraints to prune the search space, and level by level adapts the pruning to the input dataset and constraints, in order to maximize efficiency.
منابع مشابه
Preference-Based Frequent Pattern Mining
Frequent pattern mining is an important data mining problem with broad applications. Although there are many in-depth studies on efficient frequent pattern mining algorithms and constraint pushing techniques, the effectiveness of frequent pattern mining remains a serious concern: it is non-trivial and often tricky to specify appropriate support thresholds and proper constraints. In this paper, ...
متن کاملExAnte: Anticipated Data Reduction in Constrained Pattern Mining
Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been consider...
متن کاملPushing Constraints into a Pattern-Tree
Frequent Itemset Mining, or just pattern mining, plays an important role in data mining, aiming for the discovery of frequent cooccurrences in data. However, existing techniques still suffer from two bottlenecks that difficult the analysis and actual application of their results: they usually return a large number of patterns, and these patterns usually do not reflect user expectations. The mos...
متن کاملPre-processing for Constrained Pattern Mining
Constraint pushing techniques have been proven to be effective in reducing the search space in the frequent pattern mining task, and thus in improving efficiency. But while pushing anti-monotone constraints in a level-wise computation of frequent itemsets has been recognized to be always profitable, the case is different for monotone constraints. In fact, monotone constraints have been consider...
متن کاملPushing Constraints to Generate Top-K Closed Sequential Graph Patterns
In this paper, the problem of finding sequential patterns from graph databases is investigated. Two serious issues dealt in this paper are efficiency and effectiveness of mining algorithm. A huge volume of sequential patterns has been generated out of which most of them are uninteresting. The users have to go through a large number of patterns to find interesting results. In order to improve th...
متن کامل